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Abstract

With several new large-scale surveys on the horizon,
including LSST, TESS, ZTF, and Evryscope, faster and
more accurate analysis methods will be required to ade-
quately process the enormous amount of data produced.
Deep learning, used in industry for years now, allows for
advanced feature detection in minimally prepared data–
sets at very high speeds; however, despite the advantages
of this method, its application to astrophysics has not yet
been extensively explored. This dearth may be due to
a lack of training data available to researchers. Here we
generate synthetic data loosely mimicking the properties
of rapidly–pulsating hot subdwarf B (sdBVr) stars and
compare the performance of different deep learning algo-
rithms, including Artificial Neural Networks and Convolu-
tions Neural Networks, in classifying these synthetic data
sets as either pulsators, or not–observed–to–vary stars.

Synthetic Data
We developed an in-house Python suite, astroSynth,

to output synthetic light curves; these are created by first
generating ephemerides for “targets” and then “observ-
ing” each ephemeris with a function, thus loosely mimick-
ing how telescopes observe. These light curves can show
properties consistent with either pulsating stars, or not-
observed-to-vary (NOV) stars. Ephemerides are created
through the summation of sine waves with Poisson noise.
An example of an astroSynth data product (Figure 1)
shows the generated light curve (bottom panel) and as-
sociated Lomb-Scargle Periodogram (top panel).

We generate two different datasets for classification.
The first dataset (hereafter d–I) contains 100,000 light
curves built from continuous observations. The second
dataset (hereafter d–II) contains 100,000 light curves built
from non–continuous observations. In both d–I and d–
II, half of the light curves show signals with frequen-
cies and amplitudes consistent with those of sdBVr stars
(f=833.3-16670µHz and A=0-20ppt; Heber 2016). The
other half of the light curves contain only Poisson noise.

0 1000 2000 3000 4000 5000 6000
Time [s]

9.8

10.0

10.2

10.4

Fl
ux

2000 4000 6000 8000 10000 12000 14000 16000
Frequency [µHz]

0

2

4

6

8

A
m

pl
itu

de

Fig. 1: Example of a synthetic light curve generated by astroSynth (bottom),
along with its associated Lomb-Scargle Periodogram (Top)

Artificial Neural Network Performance
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Fig. 2: Artificial Neural Network Performance vs. S/N Level

An evolution of the perceptron (Rosenblatt
1958), the artificial neural network (ANN) was an
early kind of neural network that gained widespread
usage. ANNs generally take a one dimensional in-
put vector of a predefined size, perform a number of
matrix multiplications against weight matrices, and
apply non-linear “activation” functions to the results
of these multiplications. Like all forms of supervised
machine learning, ANNs must be trained. This takes
the form of modifying the values of the weight ma-
trices. Once training is complete, the network can
be used for its intended purpose.

Here we construct an ANN which expects a
length 503 input vector and has one output. The
input vector includes the LSP, using 500 frequency
bins, of each light curve, as well as the maximum
peak in the LSP, median value of the LSP, and fre-
quency of maximum peak in the LSP. The network’s
output is trained using 80 percent of the synthetic
data set d–I, to return either a 1 for pulsating stars,

or a 0 for NOV stars. Using this network we achieve a classification accuracy of 90 percent, down to a signal–noise–level
of 3.44 σ (Figure 2) on the remaining 20 percent of our data set. It should be noted that with this network we did not
conduct extensive hyperparameter tuning, and that if this tuning were to be done it is likely that an ANN could perform
better than the one presented here.

We apply this ANN model to the classification of light curves of all known sdB stars in the GALEX mission database
(Boudreaux et al. 2017). Of the 5 known sdBVr stars in this dataset, 4 are successfully identified, while one was incorrectly
classed as NOV. Additionally, the GALEX data used has multiple large systematic aliases, and is in general quite noisy;
consequently, many targets which are not classified as pulsating stars were incorrectly classified as pulsating stars by this
network.

Convolutional Neural Network Performance
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Fig. 3: Convolutional Neural Network Performance vs. S/N Level

Artificial Neural Networks, presented above,
are well suited for the analysis of one-dimensional
data; however, because observations of real targets
often involve data with large time gaps, these ob-
servations can be re-factored into two–dimensional
data.

In other fields, significant research has been
conducted with convolutional neural networks
(CNN). CNNs are inspired by the mechanism which
animals use to process visual information (Schmid-
huber 2017). This network paradigm has proven
well–suited for analysis of two-dimensional data.
As d–II has non–continuous observations, we elect
to break each light curve into multiple “sub–light
curves”, breaking on the gaps between observations.
We then take the LSP of each sub–light curve, and
stack those LSPs to generate a sliding FT. This slid-
ing FT is then passed onto a CNN for analysis.

We use 80 percent of d–II to train the network,
and then test the network’s performance using the
remaining 20 percent of data. Figure 3 shows how the CNNs performance scales with S/N. This model achieves a 90 percent
accuracy down to 1.56σ. One should also note that, when compared to the ANN, the CNN has a much steeper increase in
accuracy. The increase in performance that the CNN shows over the ANN is not necessarily surprising as the CNN has the
ability to detect if a signal is stable through time in a way that the ANN cannot.

Recurrent Neural Networks
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Fig. 4: Hyperparameter tuning results for an RNN investigating the ratio of batch
size to epochs. Note that more than two parameters were tuned simultaneously.

The two network paradigms presented here, ANN
and CNN, require a constant-sized input vector; however,
it is unfeasible to guarantee that light curves will always
be made up of the same number of observations. Con-
sequently, when analyzing with either the ANN or CNN
we first compute the LSP of the light curve with a fixed
number of frequency bins (500). This allows us to simulta-
neously exaggerate the features that are most important
for pulsation detection (periodic signals) and to guarantee
a constant-sized input vector. Computing LSPs is, how-
ever, a relatively expensive process. Frequency space also
loses phase information, which could conceivably be use-
ful in breaking certain degeneracies between “true” signals
and noise.

Recurrent Neural Networks (RNNs), which have
generated significant excitement in machine learning lit-
erature recently, may provide a way to analyze time series
data directly. We have built a set of recurrent networks
to analyze our synthetic data in time space; however, even
with significant hyperparameter tuning (Figure 4) we are
unable to approach the classification accuracy seen with
either the ANN or CNN.
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